

Eco Temp

NOTE: Appearance of unit may vary.

Installation Instructions

WCH8 Series Split System Heat Pump
Up to 18 SEER
2-3-4-5 Ton Capacity R410A

Table of Contents	
Section 1. Safety	2
Section 2. Unit Location Considerations	3
Section 3. Unit Preparation	5
Section 4. Setting the Unit	5
Section 5. Refrigerant Line Considerations	6
Section 6. Refrigerant Line Routing	7
Section 7. Refrigerant Line Brazing	8
Section 8. Refrigerant Line Leak Check	10
Section 9. Evacuation	11
Section 10. Service Valves	11
Section 11. Electrical - Low Voltage	12
Section 12. Electrical - High Voltage	13
Section 13. Start Up	14
Section 14. System Charge Adjustment	15
Section 15. System operation and Troubleshooting	19

ALL phases of this installation must comply with NATIONAL, STATE AND LOCAL CODES

IMPORTANT — This Document is customer property and is to remain with this unit. Please return to service information pack upon completion of work.

These instructions do not cover all variations in systems or provide for every possible contingency to be met in connection with the installation. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to your installing dealer or local distributor.

Note: The manufacturer recommends installing only approved matched indoor and outdoor systems. All of the manufacturer's split systems are A.H.R.I. rated only with TXV indoor systems. Some of the benefits of installing approved matched indoor and outdoor split systems are maximum efficiency, optimum performance and the best overall system reliability.

Section 1. Safety

Important - This document contains a wiring diagram and service information. This is customer property and is to remain with this unit. Please return to service information pack upon completion of work.

CAUTION

This information is intended for use by individuals possessing adequate backgrounds of electrical and mechanical experience. Any attempt to repair a central air conditioning product may result in personal injury and/or property damage. The manufacturer or seller cannot be responsible for the interpretation of this information, nor can it assume any liability in connection with its use.

WARNING

HAZARDOUS VOLTAGE!

Failure to follow this warning could result in property damage, severe personal injury, or death.

Disconnect all electric power, Including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power cannot be inadvertently energized.

WARNING

REFRIGERANT OIL!

Any attempt to repair a central air conditioning product may result in property damage, severe personal injury, or death.

These units use R-410A refrigerant which operates at 50 to 70% higher pressures than R-22. Use only R-410A approved service equipment. Refrigerant cylinders are painted a "Rose" color to indicate the type of refrigerant and may contain a "dip" tube to allow for charging of liquid refrigerant into the system. All R-410A systems with variable speed compressors use a PVE oil that readily absorbs moisture from the atmosphere To limit this 'hygroscopic" action, the system should remain sealed whenever possible. If a system has been open to the atmosphere for more than 4 hours, the compressor oil must be replaced. Never break a vacuum with air and always change the driers when opening the system for component replacement.

CAUTION

HOT SURFACE!

May cause minor to severe burning. Failure to follow this Caution could result in property damage or personal injury. Do not touch top of compressor.

CAUTION

CONTAINS REFRIGERANT!

Failure to follow proper procedures can result in personal illness or injury or severe equipment damage.

System contains oil and refrigerant under high pressure. Recover refrigerant to relieve pressure before opening system.

CAUTION

GROUNDING REQUIRED!

Failure to inspect or use proper service tools may result in equipment damage or personal injury.

Reconnect all grounding devices. All parts of this product that are capable of conducting electrical current are grounded. if grounding wires, screws, straps, clips, nuts, or washers used to complete a path to ground are removed for service, they must be returned to their original position and properly fastened.

WARNING

SERVICE VALVES!

Failure to follow this warning will result in abrupt release of system charge and may result in personal injury and/or property damage. Extreme caution should be exercised when opening the Liquid Line Service valve. Turn valve stem counterclockwise only until the stem contacts the rolled edge. No torque is required.

WARNING

BRAZING REQUIRED!

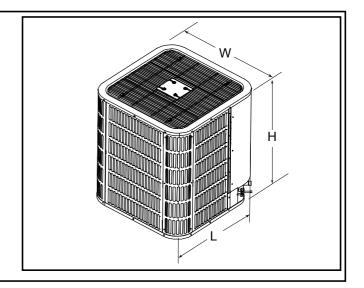
Failure to inspect lines or use proper service tools may result in equipment damage or personal injury. If using existing refrigerant lines make certain that all joints are brazed, not soldered.

WARNING

HIGH LEAKAGE CURRENT!

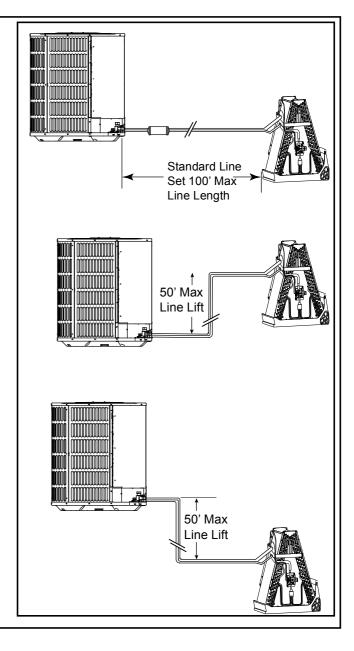
Failure to follow this warning could result in property damage, severe personal injury, or death.

Earth connection essential before connecting electrical supply.


Section 2. Unit Location Considerations

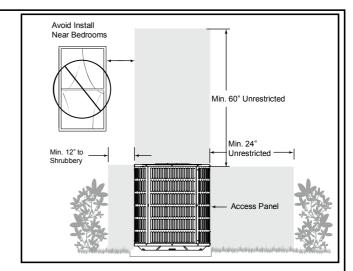
2.1 Unit Dimensions

Unit Dimensions						
Models	H x W x L(Inches)					
2436	24-15/16 x 29-1/8 x 29-1/8					
4860	33-3/16 x 29-1/8 x 29-1/8					


See Product Specifications for unit's weight.

When mounting the outdoor unit on a roof, be sure the roof will support the unit's weight. Properly selected isolation is recommended to prevent sound or vibration transmission to the building structure.

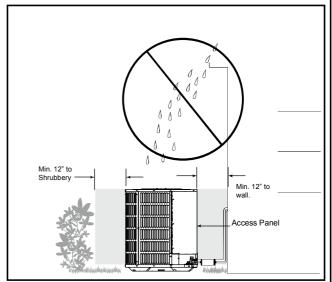
2.2 Refrigerant Piping Limits


- Maximum line length = 100 feet.
- Maximum vertical length = 50 feet.
- Compressor crankcase heat is required for line lengths over 50 feet.
- Use only the line diameters indicated in Table 5.1.

2.4 Location Restrictions

Ensure the top discharge area is unrestricted for at least 60 inches above the unit.

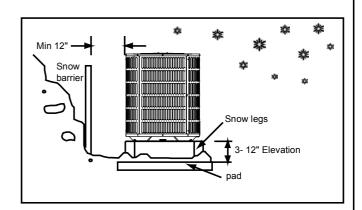
Do not locate outdoor unit near bedrooms since normal operational sounds may be objectionable.



Position unit to allow adequate space for unobstructed airflow, wiring, refrigerant lines, and serviceability.

Allow a minimum of 12 in. clearance on one side of access panel to a wall and a minimum of 24 in. on the adjacent side of access panel.

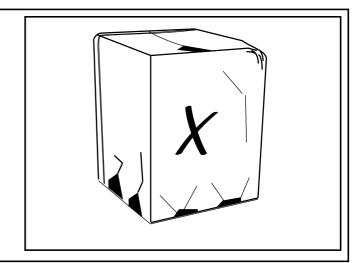
Maintain a distance of 24 in. between units.


Position unit so water, snow, or ice from roof or overhang cannot fall directly on unit.

Cold Climate Considerations

Note: It is recommended that these precautions be taken for units being installed in areas where snow accumulation and prolonged below-freezing temperatures occur.

- Units should be elevated 3-12 inches above the pad or rooftop, depending on local weather. This additional height will allow drainage of snow and ice melted durlng defrost cycle prior to its refreezlng. Ensure that drain holes in unit base pan are not obstructed, preventing drainage of defrost water.
- If possible, avoid locations that are likely to accumulate snow drifts. if not possible, a snow drift barrier should be installed around the unit to prevent a build-up of snow on the sides of the unit.

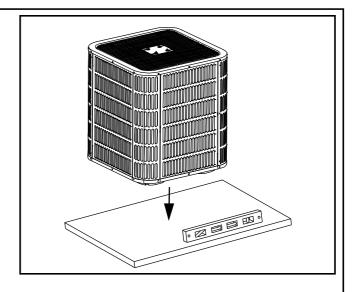


Section 3. Unit Preparation

3.1 Prepare The Unit For Installation

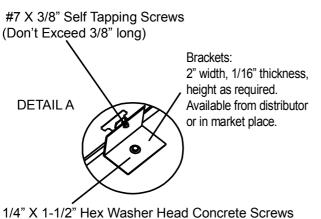
STEP 1 - Check for damage and report promptly to the carrier any damage found to the unit.

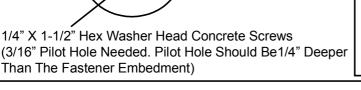
The charge port can be used to check to be sure the refrigerant charge has been retained during shipment.

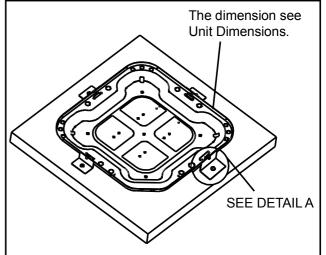


Section 4. Setting the Unit

4.1 Pad Installation

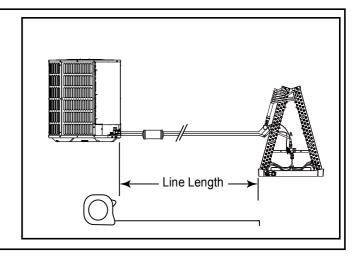

When installing the unit on a support pad, such as a concrete slab, consider the following:


- The pad should be at least 1-2" larger than the unit on all sides.
- The pad must be separate from any structure.
- The pad must be level.
- The pad should be high enough above grade to allow for drainage.
- The pad location must comply with National, State, and Local codes.



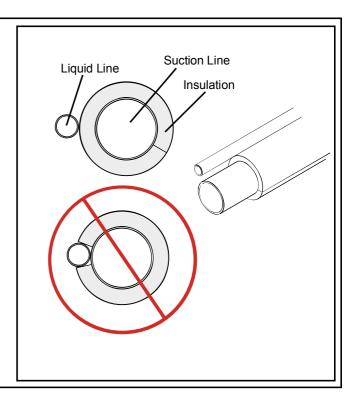
IMPORTANT NOTE:

These instructions are intended to provide a method to tie-down system to cement slab as a securing procedure for high wind areas. It is recommended to check Local Codes for tie-down methods and protocols.


Section 5. Refrigerant Line Considerations

5.1 Refrigerant Line and Service Valve Connection Sizes

Table 5.1						
	Line	Sizes	Service Valve (Connection Sizes		
Model	Suction Line	Liquid Line	Suction Line Connection	Liquid Line Connection		
2436	3/4	3/8	3/4	3/8		
4860	7/8	3/8	7/8	3/8		

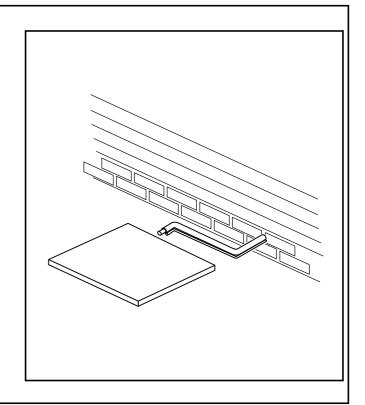

5.2 Required Refrigerant Line Length

Determine required line length.

5.3 Refrigerant Line Insulation

Important: The Suction Line must always be insulated. DO NOT allow the Liquid Line and Suction Line to come in direct (metal to metal) contact.

5.4 Reuse Existing Refrigerant Lines


A CAUTION

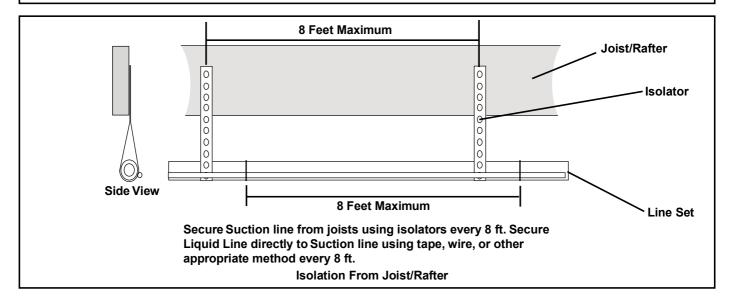
If using existing refrigerant lines make certain that all joints are brazed, not soldered.

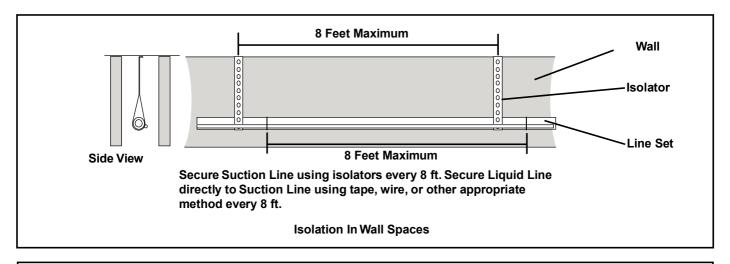
For retrofit applications, where the existing refrigerant lines will be used, the following precautions should be taken:

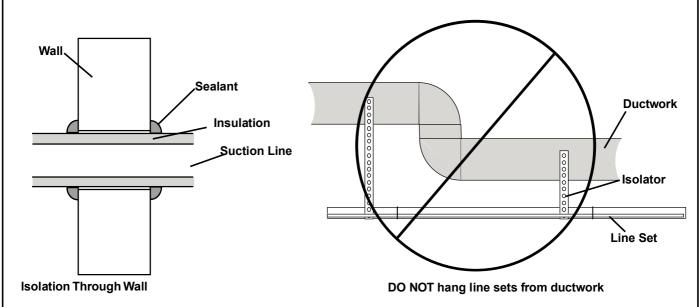
- Ensure that the refrigerant lines are the correct size. Refer to Section 2.2 listed and Table 5.1.
- Ensure that the refrigerant lines are free of leaks, acid, and oil.

Note: The manufacturer recommends installing only approved matched indoor and outdoor systems. All of the manufacturer's split systems are A.H.R.I. rated only with TXV indoor systems. Some of the benefits of installing approved matched indoor and outdoor split systems are maximum efficiency, optimum performance and the best overall system reliability.

Section 6. Refrigerant Line Routing

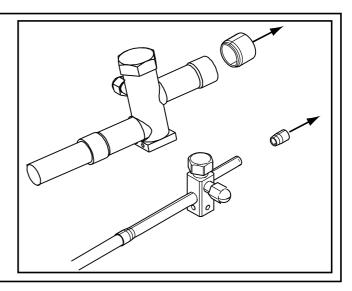

6.1 Precautions

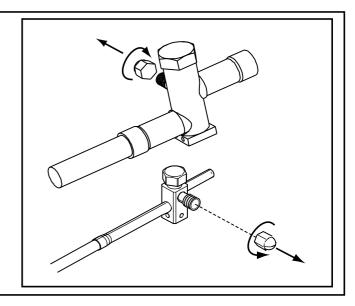

Important: Take precautions to prevent noise within the building structure due to vibration transmission from the refrigerant lines.


Comply with National, State, and Local Codes when isolating line sets from joists, rafters, walls, or other structural elements.

For Example:

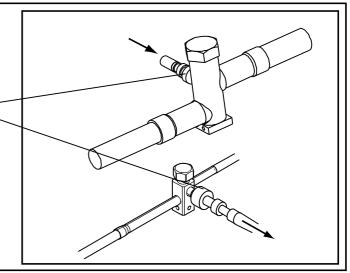
- When the refrigerant lines have to be fastened to floor joists or other framing in a structure, use isolation type hangers.
- Isolation hangers should also be used when refrigerant lines are run in stud spaces or enclosed ceilings.
- Where the refrigerant lines run through a wall or sill, they should be insulated and isolated.
- Isolate the lines from all ductwork.
- Minimize the number of 90° turns.




Section 7. Refrigerant Line Brazing

7.1 Braze The Refrigerant Lines

STEP 1 - Remove caps or plugs. Use a deburing tool to debur the pipe ends. Clean both internal and external surfaces of the tubing using an emery cloth.

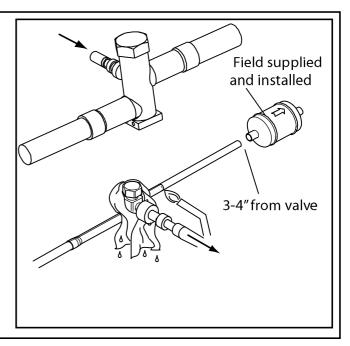


STEP 2 - Remove the pressure port cap from both service valves.

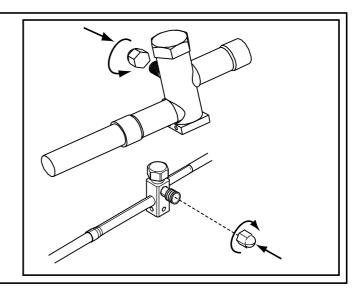
STEP 3 - Purge the refrigerant lines and indoor coil with dry nitrogen.

This pipe must have a thimble

STEP 4 – Wrap a wet rag around the valve body to avoid heat damage and continue the dry nitrogen purge.

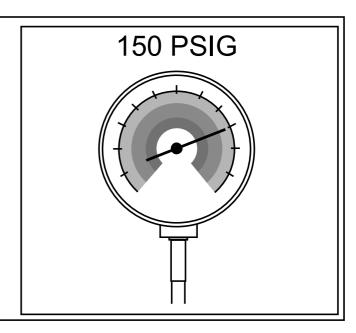

Braze the refrigerant lines to the service valves.

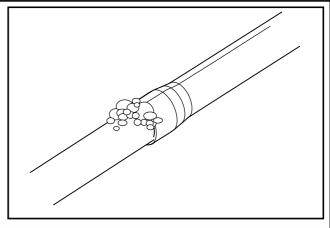
Check liquid line filter drier's directional flow arrow to confirm correct direction of refrigeration flow (away from outdoor unit and toward evaporator coil) as illustrated. Braze the filter drier to the Liquid Line.


Continue the dry nitrogen purge. Do not remove the wet rag until all brazing is completed.

Important: Remove the wet rag before stopping the dry nitrogen purge.

Note: Install drier in Liquid Line.

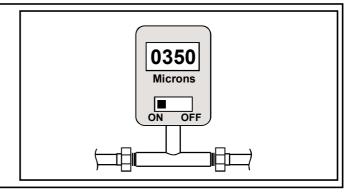

STEP 5 - Replace the pressure tap caps after the service valves have cooled.


Section 8. Refrigerant Line Leak Check

8.1 Check For Leaks

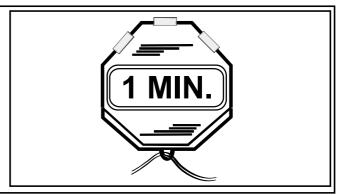
STEP 1 -Pressurize the refrigerant lines and evaporator coil to 150 PSIG using dry nitrogen.

STEP 2 -Check for leaks by using a soapy solution or bubbles at each brazed location.



Section 9. Evacuation

9.1 Evacuate the Refrigerant Lines and Indoor Coil


Important: Do not open the service valves until the refrigerant lines and indoor coil leak check and evacuation are complete.

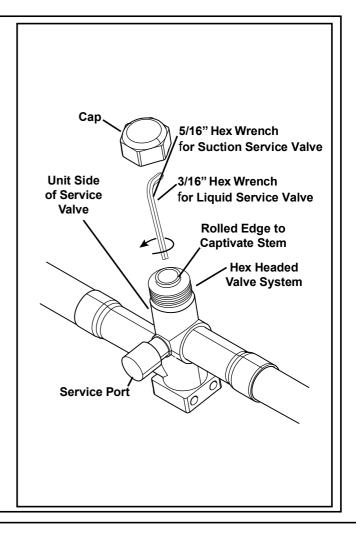
STEP 1 – Evacuate until the micron gauge reads no higher than 350 microns, then close the valve to the vacuum pump.

STEP 2 – Observe the micron gauge. Evacuation is complete if the micron gauge does not rise above 500 microns in one (1) minute.

Once evacuation is complete blank off the vacuum pump and micron gauge, and close the valves on the manifold gauge set.

Section 10. Service Valves

10.1 Open the Service Valves


A WARNING

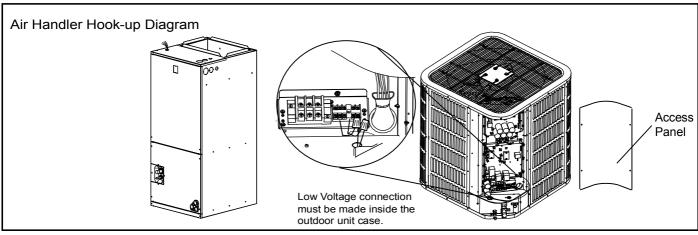
Extreme caution should be exercised when opening the Liquid Line Service Valve. Turn counterclock—wise until the valve stem just touches the rolled edge. No torque is required. Failure to follow this warning will result in abrupt release of system charge and may result in personal injury and /or property damage.

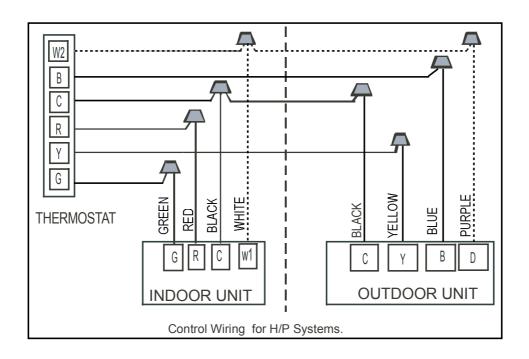
Important: Leak check and evacuation must be completed before opening the service valves.

Important: The Suction Service Valve must be opened first BEFORE opening the Liquid Service Valve!

- STEP 1 Remove service valve cap.
- **STEP 2** Fully insert hex wrench into the stem and back out counterclockwise until valve stem just touches the rolled edge (approximately five (5) turns.)
- **STEP 3** Replace the valve stem cap to prevent leaks. Tighten finger tight plus an additional 1/6 turn.
- **STEP 4** Repeat STEPS 1 3 for Liquid Service Valve.

Section 11. Electrical - Low Voltage


11.1 Low Voltage Maximum Wire Length


Table 11.1 defines the maximum total length of low voltage wiring from the outdoor unit, to the indoor unit, and to the thermostat.

Field provided bushing or strain relief is required at the low voltage wire entry point.

Table 11.1						
24 VOLTS						
WIRE SIZE MAX. WIRE LENGTH						
18 AWG	150 Ft.					
16 AWG	225 Ft.					
14 AWG	300 Ft.					

11.2 Low Voltage Hook-up Diagrams

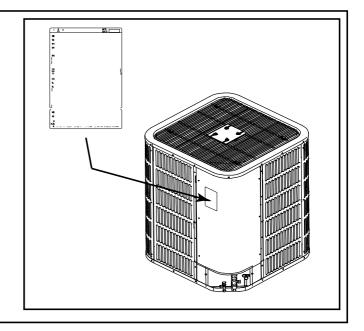
Notes:

- 1. Be sure power supply agrees with equipment nameplate.
- Power wiring and grounding of equipment must comply with local codes.
- Low voltage wiring to be No. 18 AWG minimum conductor.
- 4. "----"Control for auxiliary heat during defrost.

Section 12. Electrical - High Voltage

12.1 High Voltage Power Supply

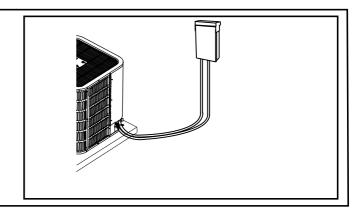
A WARNING


LIVE ELECTRICAL COMPONENTS!

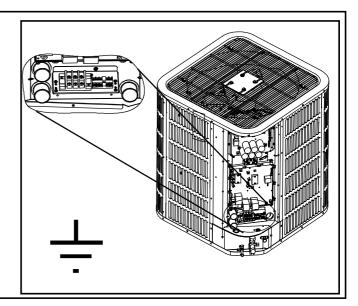
During installation, testing, servicing, and trouble—shooting of this product, it may be necessary to work with live electrical components. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

The high voltage power supply must agree with the equipment nameplate.

Power wiring must comply with national, state, and local codes.

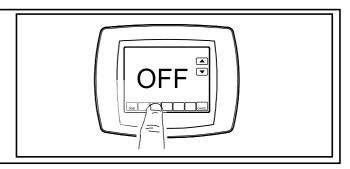

Follow instructions on unit wiring diagram located on the inside of the control box cover and in the Service Facts document included with the unit.

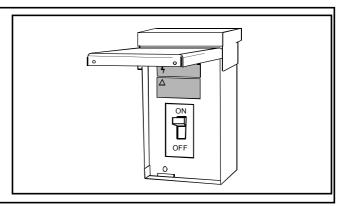
12.2 High Voltage Disconnect Switch


Install a separate disconnect switch at the outdoor unit.

Field provided flexible electrical conduit must be used for high voltage wiring.

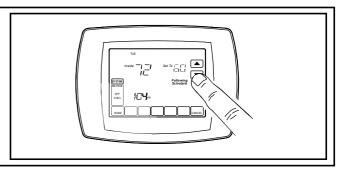
12.3 High Voltage Ground


Ground the outdoor unit per national, state, and local code requirements.


Section 13. Start Up 13.1 System Start Up

STEP 1 - Ensure Sections 7, 8, 9, 10, 11, 12, and 13 have been completed.

STEP 2 - Set System Thermostat to OFF.


STEP 3 - Turn on disconnect to apply power to the indoor and outdoor units.

STEP 4 - Wait one (1) hour before starting the unit if compressor crankcase heater is used and the outdoor ambient temperature is below 70 °F.

STEP 5 - Set system thermostat to ON.

Section 14. System Charge Adjustment

14.1 charging: weigh-In Method

weigh-In Method can be used for the Initial installation, or anytime a system charge is being replaced. weigh-In Method can also be used when power is not available to the equipment site or operating conditions (indoor/Outdoor temperatures) are not In range to verify with the subcooling charging method.

Α	В	С
Model	Factory Charge	charge multiplier for interconnecting refrigerant tube length
All models	(The data on nameplate)	0.6 oz/ft

Note: The factory charge in the outdoor unit is sufficient for 15 feet of standard size interconnecting liquid line.

Table 19. New Installations — Calculating additional charge for lineset greater than 15 ft.

1. Total Line Length (ft) = _____(a)
2. Standard Lineset (ft) = ____(b)
3. (a) minus (b) = ____(c)
4. Refrigerant Multiplier = ____(e)*
5. Refrigerant Adder (c*d) = _____(e)*

* If lineset is less than 15 ft, (e) = 0

Table 20. Sealed-System Repairs — Calculating total system charge.

```
1. Total Line Length (ft) = ______(a)

2. Standard Lineset (ft) = _____(b)

3. (a) minus (b) = _____(c)

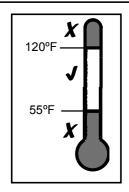
4. Refrigerant Multiplier = _____(e)*

5. Refrigerant Adder (c*d) = _____(e)*

6. Factory Charge (namplate) = _____(f)

7. Total System Charge (e+f) = _____

* If lineset is less than 15 ft, (e) = 0
```

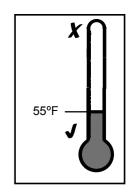

Note: The only mode approved for validating system charge is while in Cooling "Charge Mode". Outdoor Temperature must be between 55°F and 120°F with Indoor Temperature kept between 70°F and 80°F.

14.2 Subcooling charging and refrigerant adjustment in cooling (above 55 F outdoor temp.)

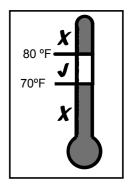
STEP 1 - Check the outdoor ambient temperatures.

Subcooling (in cooling charge mode) is the only recommended method of charging above 55°F outdoor ambient temperatures.

Outdoor Temperature Above 55°F



Outdoor Temp1

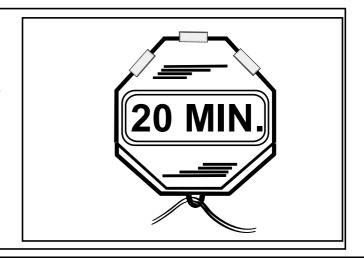

For outdoor ambient temperatures below $55^{\rm o}{\rm F}$, use weigh-in charge method.

Note:It is important to return in the spring or summer to accurately charge the system in the cooling mode when outdoor ambient temperature is above 55°F.

Outdoor Temperature Below 55°F

Outdoor Temp2

Indoor Temp

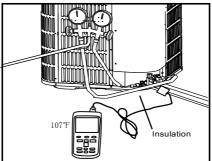

For best results the indoor temperature should be kept between 70°F to 80°F .

STEP 2 - Ensure Sections 7, 8, 9, 10, and 13 have been completed.

STEP 3 - Initiate charge mode and stabilize system.

After starting the system in cooling mode, short press "FORCE"button, and " \vdash " symbol appears in 10 minutes, operate the system for a minimum of twenty (20) minutes.

Important: After twenty (20) minute stabilization period, maintain continuous operation while adjusting refrigerant charge or TXV, after which operate system for a minimum of five (5) minutes for system to stabilize, otherwise repeat step 3.


STEP 4 - Calculate superheat value on suction valves(According to form)

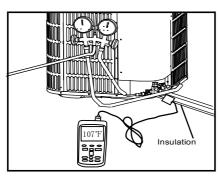
Measured Suction Line Temp. = _____°F

Measured Suction Line Pressure = _____PSIG

Calculate superheat value = _____°F

Note:Make sure the superheat value of suction valve should be above 12°F, if the value is lower than this, indoor TXV should be adjusted. If the temperature is higher than 18°F, we suggest to adjust indoor TXV. Repeat the steps above.

R-410A REFRIGERAN CHART								
Suction Line		FINAL SUPERHEAT(°F)						
TEMP	8	10	12	14	16	18	20	22
(°F)	9	SUCTI	ON (SAGE	PRE	SSU	RE (P	SIG)
40	101	97	93	89	86	82	78	75
42	105	101	97	93	89	86	82	78
44	110	105	101	97	93	89	86	82
46	114	110	105	101	97	93	89	86
48	118	114	110	105	101	97	93	89
50	123	118	114	110	105	101	97	93
52	128	123	118	114	110	105	101	97
54	133	128	123	118	114	110	105	101
56	138	133	128	123	118	114	110	105
58	143	138	133	128	123	118	114	110
60	148	143	138	133	128	123	118	114
62	153	148	143	138	133	128	123	118
64	159	153	148	143	138	133	128	123
66	164	159	153	148	143	138	133	128
68	170	164	159	153	148	143	138	133
70	176	170	164	159	153	148	143	138
72	182	176	170	164	159	153	148	143


STEP 5 - Calculate subcooling value on liquid valves(According to form)

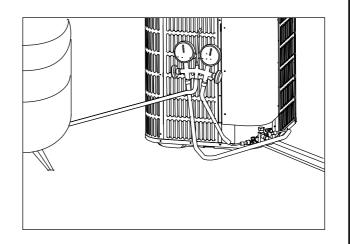
Measured liquid Line Temp = _____°F

Measured liquid Line Pressure = _____PSIG

Calculate subcooling value = _____°F

Note: If calculated subcooling value is lower than the design subcooling value, please add refrigerant. Repeat the steps above.

Model	24/36	48/60
Design subcooling	10°F (± 2°F)	8°F (± 2°F)


R-410A REFRIGERAN CHART								
Liquid Line		FINALSUBCOOLING (°F)						
TEMP	6	7	8	9	10	11	12	13
(°F)	L	_IQUII	D GA	GE P	RESS	SURE	(PSIG	i)
55	173	176	179	182	185	188	191	195
60	188	191	195	198	201	204	208	211
65	204	208	211	215	218	221	225	229
70	221	225	229	232	236	239	243	247
75	239	243	247	251	255	259	262	266
80	259	262	266	270	275	279	283	287
85	279	283	287	291	295	300	304	309
90	300	304	309	313	318	322	327	331
95	322	327	331	336	341	346	351	355
100	346	351	355	360	365	370	376	381
105	370	376	381	386	391	397	402	407
110	397	402	407	413	418	424	430	435
115	424	430	435	441	447	453	459	465
120	453	459	465	471	477	483	489	496
125	483	489	496	502	508	515	521	528

STEP 6 - Adjust refrigerant level to attain proper gage pressure.

Add refrigerant if the design subcooling is lower than the chart value.

- 1. Connect gages to refrigerant bottle and unit as illustrated.
- 2. Purge all hoses.
- 3. Open bottle.
- Stop adding refrigerant when subcooling. matches the charging chart Final Subcooling value.

Recover refrigerant if the subcooling is higher than the chart value.

STEP 7 - Stabilize the system.

1. Wait 5 minutes for the system condition to stabilize between adjustments.

Note: When subcooling is within specifications, the system is properly charged.

- 2. Remove gages.
- 3. Replace service port caps to prevent leaks. Tighten finger tight plus an additional 1/6 turn.

STEP 8 - Record System Information for reference.						
Record system pressures and temperatures after charging is complete.						
Outdoor model number =	Measured Suction Line Temp = °F					
Measured Outdoor Ambient = °F	Liquid Gage Pressure = PSIG					
Measured Indoor Ambient = °F	Suction Gage Pressure = PSIG					
Measured Liquid Line Temp = °F						

Section 15 System operation and Troubleshooting

1. Control Logic Description

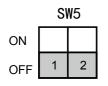
- The variable speed system adopts the same 24VAC control as any conventional Heat Pump.
- The compressor's speed is controlled based on coil pressures monitored by pressure transducer. To insure stable and adequate capacity, the compressor speed will modulate relative to evaporator pressure during cooling operation and relative to condensing pressure during heating operation. The target pressure can automatically adjust based on compressor operation so optimal capacity can be achieved. Target pressure can manually be adjusted (SW4) to achieve improved dehumidification and capacity demands.

	SW4 -				
ON					
OFF	1	2	3	4	

SW4-1	Not ı	Not used			
SW4-2	Not u	Not used			
0)4/4 0	ON	Adaptive capacity output disable			
SW4-3	OFF	Adaptive capacity output enabl e			
SW4-4	ON	Accelerated cooling/heatin g			
3774-4	OFF	Normally cooling/heatin g			

2. Sensors (Thermistors/Pressure Transducer)

- T3 = Outdoor Coil Temperature (Table 1)
 - o High/Low temperature protection
 - o Outdoor fan control (cooling mode)
 - o Defrost control (heating mode)
 - o Ambient Temperature forecast
- T4 = Ambient Temperature (Table 1)
 - o Operating condition permission
 - o Defrosting condition permission
 - o Outdoor fan control (heating mode)
- T5 = Compressor Discharge Temperature (Table 2)
 - o High/Low temperature protection
 - Electronic Expansion Valve (EXV) control (ODU)
- TF = IPM Radiator Temperature) (Table 2)
 - Inverter High Temperature Protection
- Pressure transducer (Table 3)
 - o Operating speed control
 - o Electronic Expansion Valve (EXV) control (ODU)
 - o High pressure protection (heating mode)
 - o Low pressure protection (cooling mode)


3. Defrost description

- The Demand Defrost Control (DDC) monitors the ODU coil temperature using thermistor (T3). A second thermistor (T4) monitors outdoor ambient temperature. Based on these parameters, as well as accumulative run time and high pressure, the DDC calculates proper initiation of defrost.
- The following three conditions are required to enter defrost:
- ① Outdoor coil temperature T3 < 34F and a corresponding minimum outdoor ambient temperature is met.
- ② After "Minimum Run Time" (MRT) is achieved. MRT is based on outdoor ambient temperature (T4), for example

• MRT is 4 hours when: T4 < -23F

• MRT is 2 hours when: -23F ≤ T4 < 42F

- ③ After the high pressure saturation temperature drops below 82F for 20 minutes.
- Defrost will terminate once outdoor coil temperature (T3) reaches 64F for a period of 1 minute or defrost time has exceeded 8 minutes.
- Defrost Termination Settings (SW5) offers different defrost termination options for enhanced defrost for different geographical &/or outdoor conditions.

Defrosting choice	SW5-1	SW5-2	Remarks
ON	Operating time is reduced by 10%	Defrosting extended for 60 seconds	
OFF	Normal	Normal	Default
Remarks	Enter defrost	Quit defrost	

- Manual Defrost:
 - 1. System must have a call for heat and have been operating for a minimum of 8 minutes.
 - 2. Press "Force" button on inverter board for 6 seconds to begin forced defrost.
 - 3. Wait approximately 40 seconds for defrost to initiate.
 - 4. Once defrost initiates, the display will indicate "dF".
 - 5. Defrost test will terminate automatically, after which the display will indicate running speed.
 - 6. If a second defrost test is required, repeat step 3 after 5 minutes.

4. Compressor Crankcase Heater Description

Refrigerant migration during the OFF cycle can result in noisy start-ups, therefore a crankcase heater (CCH) is used to minimize refrigerant migration thereby minimizing start-up noise and/or bearing "wash out". All CCHs must be installed on the lower half of the compressor shell. Its purpose is to warm the compressor on the OFF cycle, driving refrigerant from compressor. At initial start-up or after extended shutdown periods, allow CCH to be energized for at least 12 hours prior to compressor operation by applying line voltage to heat pump with thermostat OFF.

- CCH operation energizes:
 - 1. First time line voltage is applied and compressor discharge temperature T5 < 104F.
 - 2. In process of defrosting.
 - 3. Compressor stops running for 4 hours and outdoor ambient temperature T4 < 50F or T5 < 104F.
- CCH operation de-energizes:
 - Compressor discharge temperature T5 ≥ 113F.

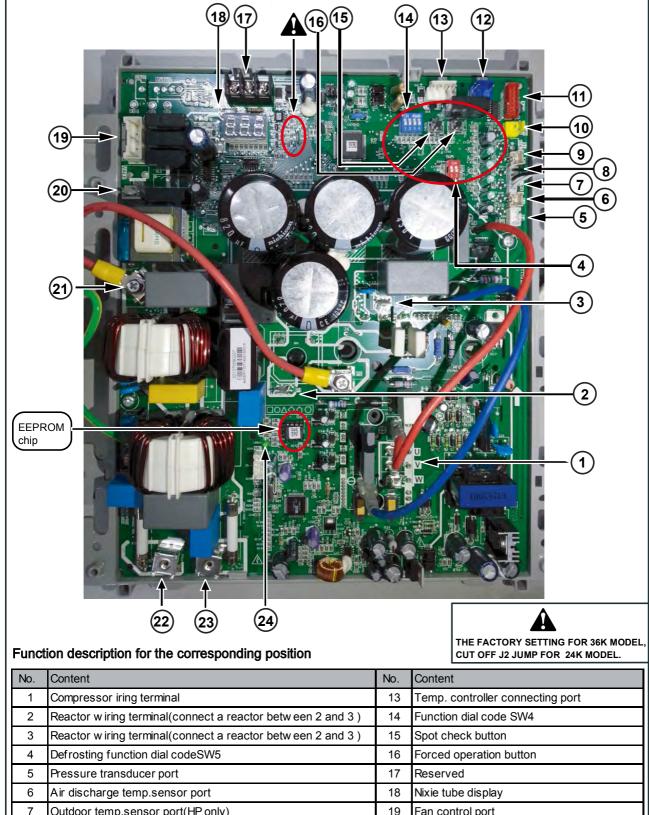
5. Reversing valve operation:

• Reversing valve energizes during heat mode and de-energizes in cool mode.

6. Protection functions:

- Outdoor coil temperature protection (T3)
 - i. If T3 > 143.6F, compressor is de-energized
 - ii. If T3 < 129.2F, compressor is energized
- Ambient temperature protection (T4)
 - i. If 50F ≤ T4 < 140F, unit can operate in cooling
 - ii. If -4F ≤ T4 < 86F, unit can operate in heating
 - iii. If T4 < 6.8F, heat pump will provide 24V control to indoor unit energizing electric heat (if installed.
- Discharge Temperature (DT) protection (T5)
 - i. If DT > 239F during cooling mode, the compressor will stop.
 - ii. If DT < 194F during cooling mode, the compressor will restart.
 - iii. If DT > 221F during heating mode, the compressor will stop.
 - iv. If DT < 167F during heating mode, the compressor will restart.
- High pressure protection (HPS) (mechanical open/close pressure switch)
 - i. HPS opens at P > 580psig, the compressor and outdoor fan stop.
 - ii. HPS closes at P < 435psig, the compressor and outdoor fan restart.
- Low pressure protection (LP)
- i. If Low Pressure < 43.5 for 5 minutes during cooling mode, the compressor and outdoor fan will stop. System will attempt to run again after 6 minutes.
- Module (inverter) protection (TF)
 - i. If TF > 176F, the compressor and outdoor fan will stop.
 - ii. If TF< 145F, the compressor and outdoor fan will restart.

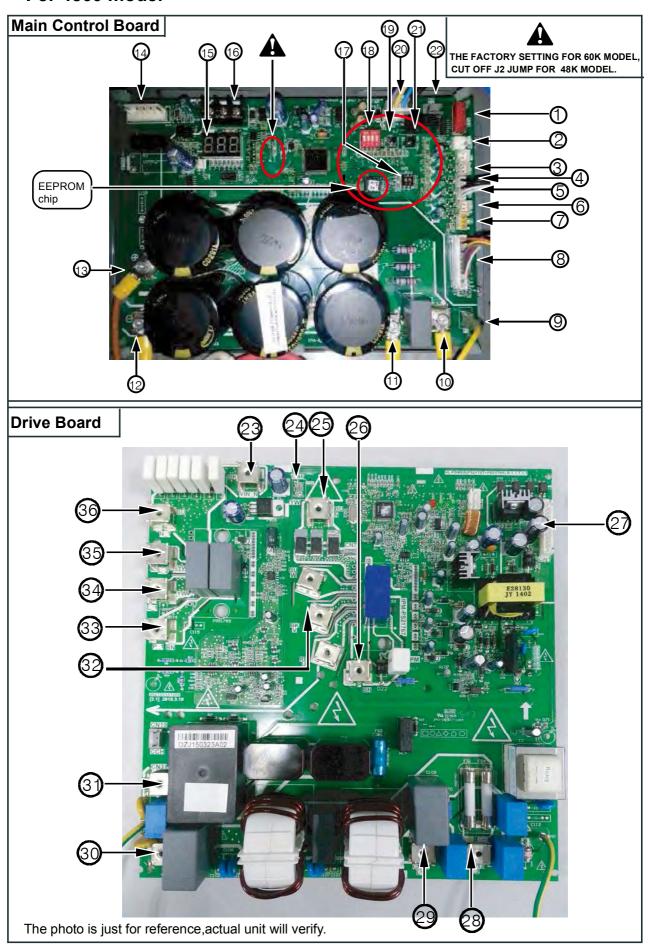
7. Fault code table


CODE	EALILT DESCRIPTION
E4	FAULT DESCRIPTION Temperature sensor fault (T3 /T4/T5/TF)
E5	High/low voltage protection
E6	DC fan motor fault
Eb	System lockup, 2 times(E6),protection in 10 minutes
E7	Compressor discharge sensor (T5) is seated fault
E9	EEPROM fault
H0	Communication fault in main contrrol chip
H3	3 times (P3) protection in 120 minutes, system lockup
H4	3 times (P6) protection in 60 minutes, system lockup
H5	5 times (P2) protection in 100 minutes, system lockup
H6	3 times (P4) protection in 100 minutes, system lockup
H8	Pressure transducer(PT) short or open fault
Hb	High pressure(PT) protection in Heating
НН	2 times(PH) protection in 200 minutes, system lockup
P0	The module radiator temperature (TF)protection
P1	High pressure switch(HPS) protection
P2	Low pressure (PT) Protection
P3	Compressor over current protection
P4	
P5	High compressor discharge temperature(T5) protection
_	High condensor coil temp. (T3) protection
P6	IPM module protection
P8	Hurricane protection of the DC fan motor
PH	Low discharge superheat protection
PC F1	Reversing valve fault protection
F1	High pressure switch(HPS) fault
F3 F4	5 times (P5) protection in180 minutes,system lockup 3 times(P0) protection in 120 minutes,system lockup
F5	5 times(Hb) protection in 180 minutes, system lockup
C3	Condensor coil sensor(T3) is seated fault in cooling
C4	3 times(C3) protection in 120 minutes, system lockup
	2 times(E7) protection in 180 minutes, system lockup
C5 C6	2 times(PC) protection in 180 minutes, system lockup
CE	5 times (P1) protection in 150 minutes, system lockup
L0-L9	IPM module protection or frequent power on/off
	otection Status Codes
+	Indication under charge model
L	Running indication under T3 limited condition
D	Running indication under T5 limited condition
P	Running indication under compressor ratio limited condition
F .	Running indication under Tf limited condition
C	
U	Running indication under current limited condition
	Running indication under low voltage limited condition
Н .	Running indication under high pressure(PT) limited condition in geatin
A	Running indication under return oil model
dF	Running indication under defrost model

8. Parameter Point Check Table

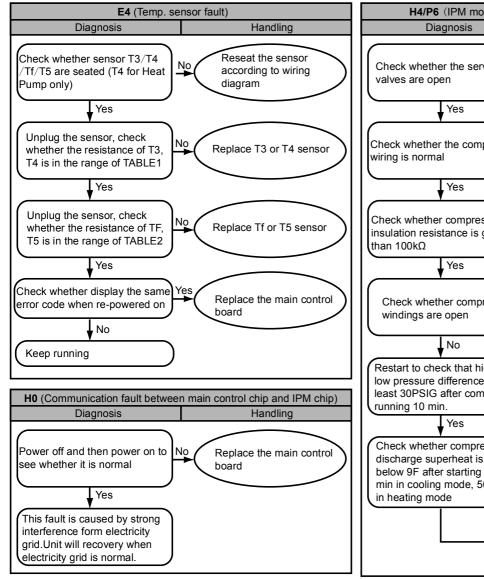
- To display system parameters, press the "Check" button to index through the series of parameters available.
- \bullet The LED display has 3 digits. The first digit is the sequence number (0-25), however it will only display (0-9) recycling the second digit, for example 24 will display 4. The second and third digits are the value of the parameter being represented.
- Normal Status, last two digits will display under following conditions:
 - i. Unit not operating (Standby Mode); "outdoor ambient temperature".
 - ii. Unit operating; displays "operating frequency".
- After 20 seconds on same parameter, display will revert back to normal status.
- If a system protection is active, first digit will display "status code".

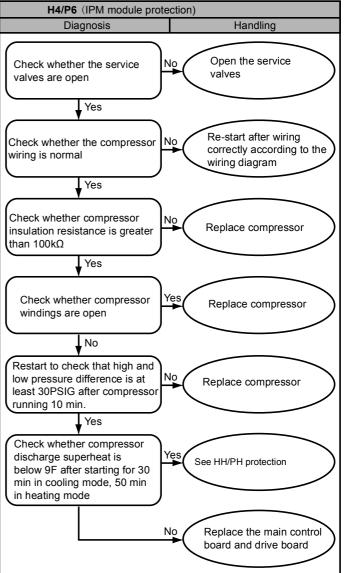
No.	Point check content	Example	Remark
0	Outdoor unit capacity	Н3	H3=Heat Pump 3 ton
1	Outdoor unit mode	2	0 standby, 2 cooling, 3 heating
2	Outdoor unit set compressor speed		
3	Opening of EXV		Actual value=display value ×8
4	T3(outdoor coil temp.) (C)		
5	T4 (outdoor ambient temp.) (C)		
6	T5(compressor discharge temp.) (C)		
7	Reserved		
8	Te (evaporating temp.) (C)		
9	Tc (condensing temp.) (C)		
10	Tf (module temp.) (C)		
11	Pe (evaporating pressure) (Mpa)		Actual value=display value÷10
12	Pc (evaporating pressure) (Mpa)		Actual value=display value÷10
13	Compressor discharge superheat (C)		Actual value
14	Reserved		
15	Reserved		
16	Compressor current (A)		Actual value=display value÷2
17	Reserved		
18	Fan speed		
19	Reserved		
20	Reserved		
21	Compressor discharge superheat (only useful for heating mode) (C)		Target Value
22	Reserved		
23	Last Fault Code		
24	Software version		
25	Remark""		

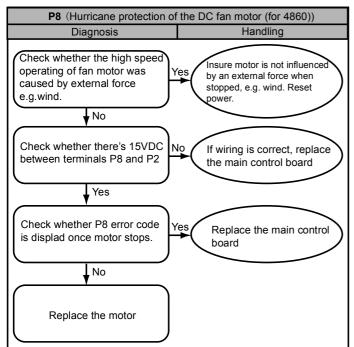

For 2436 model

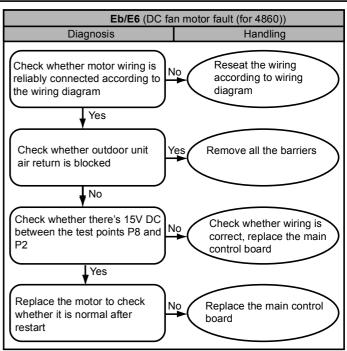
No.	Content	No.	Content
1	Compressor iring terminal	13	Temp. controller connecting port
2	Reactor wiring terminal(connect a reactor between 2 and 3)	14	Function dial code SW4
3	Reactor wiring terminal(connect a reactor between 2 and 3)	15	Spot check button
4	Defrosting function dial codeSW5	16	Forced operation button
5	Pressure transducer port	17	Reserved
6	Air discharge temp.sensor port	18	Nixie tube display
7	Outdoor temp.sensor port(HP only)	19	Fan control port
8	Condenser temp.sensor port	20	Crankcase heating zone control terminal
9	Radiator temp.sensor port	21	Short wire
10	High pressure switch port	22	Power supply connecting terminal
11	EXV drive port(HP only)	23	Power supply connecting terminal
12	Reversing valve port	24	Indicator lamp

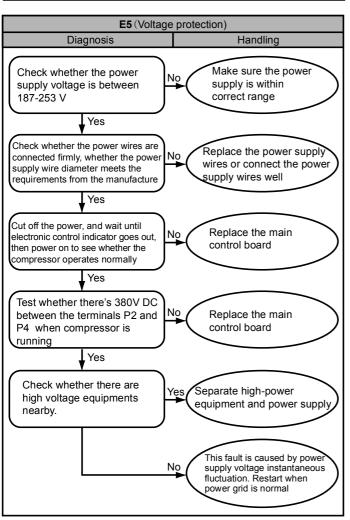
The photo is just for reference, actual unit will verify.

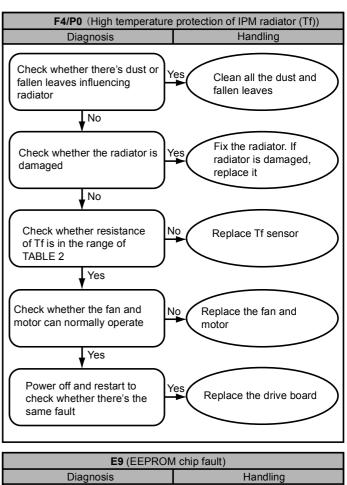

For 4860 model

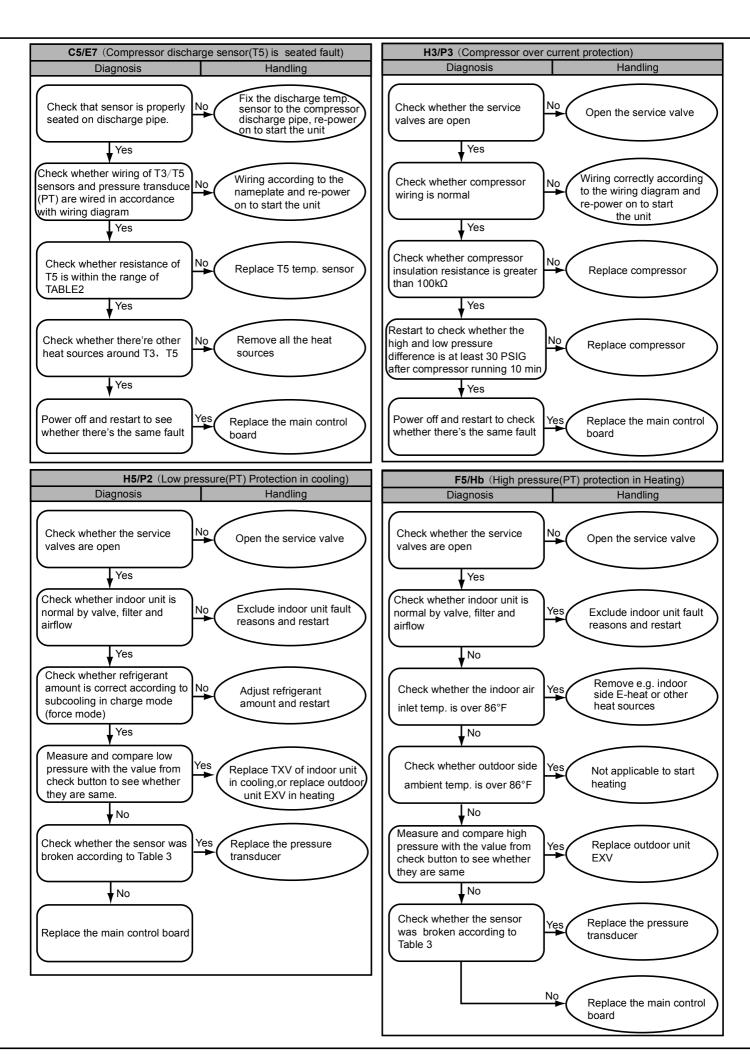


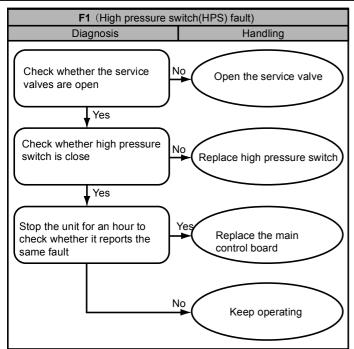

Function description for the corresponding position (For 48/60k model)

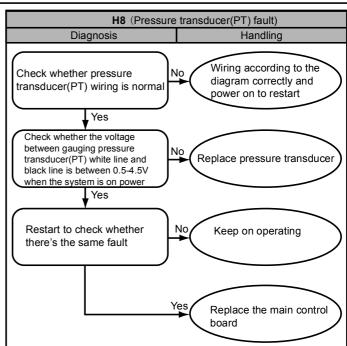

No.	Content	No.	Content
1	EXV driving port (HP only)	19	Point check button
2	High pressure switch port	20	Temp. controller connection port
3	Radiator temp. sensor port	21	Forced operation button
4	Condenser temp. sensor port	22	4-way valve port (HP only)
5	Outdoor temp. sensor port (HP only)	23	Connect the cathode of the rectifier bridge
6	Air discharge temp. sensor port	24	DC motor driving source(15V-P2)
7	Pressure transducer	25	The voltage between 25 and 26 is 380V DC(Compressor is running)
8	Connection wire port between main boards	26	The voltage between 25 and 26 is 380V DC(Compressor is running)
9	DC motor driving source(15V-P2)	27	Connection wire port between main boards
10	The voltage between 10 and 11 is 380VDC (Compressor is running)	28	AC power supply input port
11	The voltage between 10 and 11 is 380VDC(Compressor is running)	29	AC power supply input port
12	The voltage between 12 and 13 is 380VDC (Compressor is running)	30	AC power supply output port
13	The voltage between 12 and 13 is 380VDC (Compressor is running)	31	AC power supply output port
14	DC motor control port	32	Compressor connection terminal
15	Nixie tube display	33	The voltage between 33 and 36 is 380VDC (Compressor is running)
16	Reserved	34	Reactor L1 wiring terminal
17	Defrosting function dial code SW5	35	Reactor L2 wiring terminal
18	Function dial code SW4	36	The voltage between 33 and 36 is 380VDC (Compressor is running)

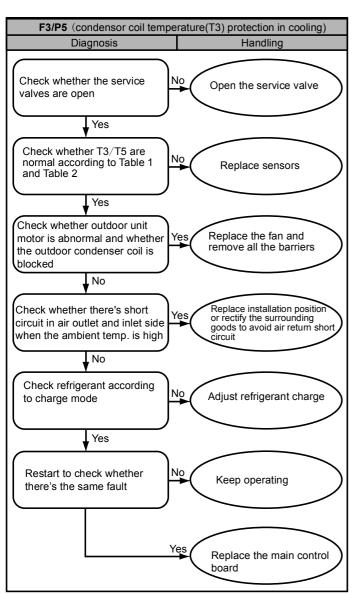

Troubleshooting

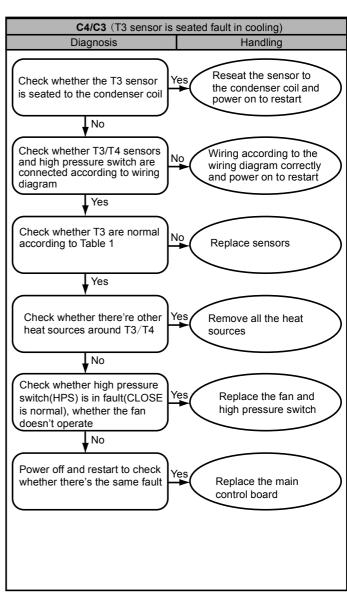












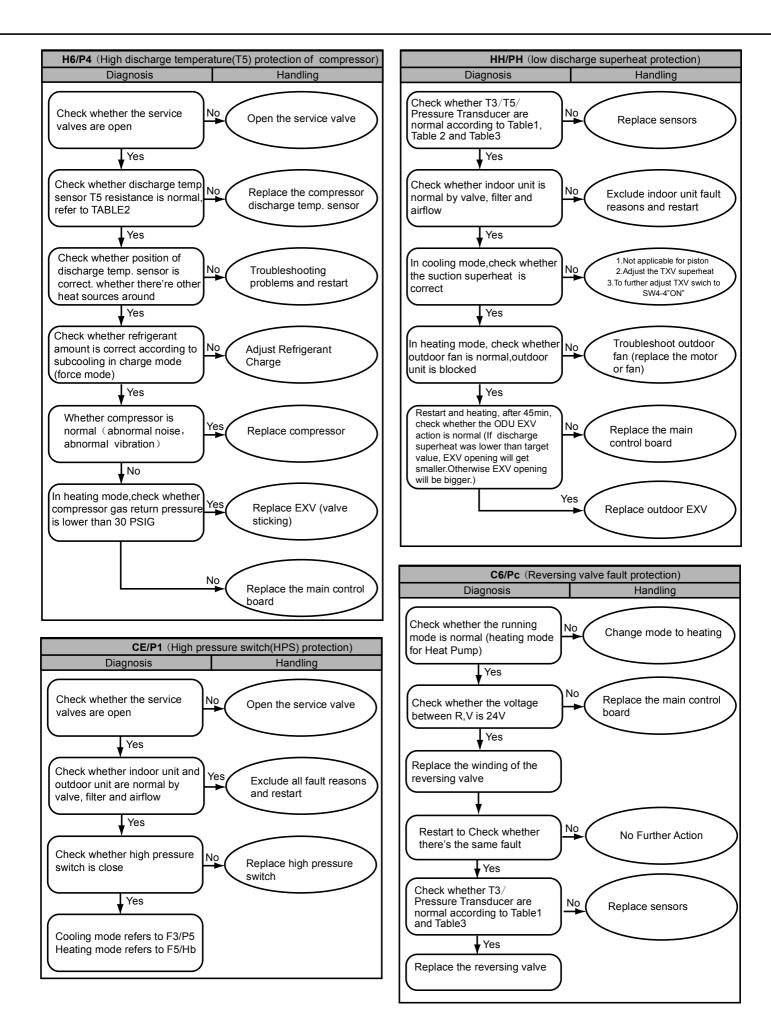


TABLE 1 (T3 & T4)

TEMP F	TEMP C	RESISTANCE kΩ	VOLTS DC	TEMP F	TEMP C	RESISTANCE kΩ	VOLTS DC
-5	-20.6	107.732	4.65	90	32.2	7.225	2.36
0	-17.8	93.535	4.6	95	35	6.401	2.21
5	-15	79.521	4.54	100	37.8	5.683	2.07
10	-12.2	67.795	4.47	105	40.6	5.057	1.93
15	-9.4	57.948	4.39	110	43.3	4.509	1.79
20	-6.7	49.652	4.3	115	46.1	4.028	1.67
25	-3.9	42.645	4.21	120	48.9	3.606	1.55
30	-1.1	36.710	4.1	125	51.7	3.233	1.43
40	4.4	27.386	3.86	130	54.4	2.902	1.32
45	7.2	23.732	3.73	135	57.2	2.610	1.22
50	10	20.610	3.59	140	60	2.350	1.13
55	12.8	17.939	3.45	145	62.8	2.119	1.04
60	15.6	15.648	3.3	150	65.6	1.914	0.96
65	18.3	13.681	3.15	155	68.3	1.731	0.88
70	21.1	11.987	2.99	160	71.1	1.574	0.82
75	23.9	10.527	2.83	165	73.9	1.416	0.75
80	26.7	9.265	2.67	170	76.7	1.276	0.68
85	29.4	8.172	2.52				

TABLE 2 (Tf & T5)

	(11 & 15)						
TEMPF	TEMP C	RESISTANCE kΩ	VOLTS DC	TEMPF	TEMP C	RESISTANCE kΩ	VOLTS DC
-5	-20.6	600.134	4.93	140	60	13.643	3.14
0	-17.8	505.551	4.92	145	62.8	12.359	3.03
5	-15	427.463	4.91	150	65.6	11.214	2.91
10	-12.2	362.739	4.89	155	68.3	10.227	2.8
15	-9.4	308.891	4.87	160	71.1	9.308	2.68
20	-6.7	265.398	4.85	165	73.9	8.485	2.56
25	-3.9	227.481	4.83	170	76.7	7.746	2.45
30	-1.1	195.601	4.8	175	79.4	7.105	2.34
35	1.7	168.707	4.77	180	82.2	6.504	2.23
40	4.4	146.695	4.74	185	85	5.963	2.13
45	7.2	127.258	4.7	190	87.8	5.474	2.02
50	10	110.707	4.66	195	90.6	5.032	1.92
55	12.8	96.572	4.61	200	93.3	4.645	1.83
60	15.6	84.465	4.56	205	96.1	4.28	1.73
65	18.3	74.411	4.51	210	98.9	3.949	1.64
70	21.1	65.408	4.45	215	101.7	3.648	1.56
75	23.9	57.634	4.39	220	104.4	3.383	1.48
80	26.7	50.904	4.32	225	107.2	3.133	1.4
85	29.4	45.258	4.24	230	110	2.904	1.32
90	32.2	40.152	4.16	235	112.8	2.694	1.25
95	35	35.699	4.08	240	115.6	2.503	1.18
100	37.8	31.807	3.99	245	118.3	2.334	1.12
105	40.6	28.398	3.89	250	121.1	2.172	1.06
110	43.3	25.506	3.8	255	123.9	2.024	1
115	46.1	22.861	3.7	260	126.7	1.888	0.95
120	48.9	20.529	3.59	265	129.4	1.767	0.9
125	51.7	18.47	3.48	270	132.2	1.651	0.85
130	54.4	16.708	3.37	275	135	1.544	0.8
135	57.2	15.085	3.26	280	137.8	1.446	0.76

TABLE 3 (Pressure Transducer)

		NSK-BD03	551		V= (7.9*PSIG*10 ⁻³)+0.5				
No.	V	Pe/Pc	No.	V	Pe/Pc	No.	V	Pe/Pc	
		PSIG			PSIG			PSIG	
1	0.69	24.4	56	1.37	110.6	111	2.54	258.5	
2	0.7	26.0	57	1.39	112.5	112	2.56	262.0	
3	0.72	27.7	58	1.4	114.5	113	2.59	265.6	
4	0.73	29.4	59	1.42	116.5	114	2.62	269.2	
5	0.75	31.2	60	1.43	118.6	115	2.65	272.8	
6	0.76	33.1	61	1.45	120.6	116	2.68	276.5	
7	0.78	35.0	62	1.47	122.7	117	2.71	280.2	
8	0.79	37.0	63	1.48	124.8	118	2.74	284.0	
9	0.81	39.0	64	1.5	127.0	119	2.77	287.8	
10	0.82	41.1	65	1.52	129.1	120	2.8	291.6	
11	0.84	43.2	66	1.53	131.3	121	2.83	295.5	
12	0.85	44.3	67	1.55	133.5	122	2.86	299.3	
13	0.86	45.4	68	1.57	135.8	123	2.89	303.3	
14	0.87	46.6	69	1.59	138.0	124	2.92	307.2	
15	0.88	47.7	70	1.61	140.3	125	2.95	311.3	
16	0.89	48.9	71	1.62	142.6	126	2.98	315.3	
17	0.89	50.0	72	1.64	145.0	127	3.02	319.4	
18	0.9	51.2	73	1.66	147.3	128	3.05	323.5	
19	0.91	52.4	74	1.68	149.7	129	3.08	327.7	
20	0.92	53.7	75	1.7	152.1	130	3.12	331.9	
21	0.93	54.9	76	1.72	154.6	131	3.15	336.1	
22	0.94	56.2	77	1.74	157.1	132	3.18	340.4	
23	0.95	57.5	78	1.76	159.6	133	3.22	344.7	
24	0.96	58.8	79	1.78	162.1	134	3.25	349.0	
25	0.97	60.1	80	1.8	164.6	135	3.29	353.4	
26	0.98	61.4	81	1.82	167.2	136	3.32	357.9	
27	0.99	62.8	82	1.84	169.8	137	3.36	362.4	
28	1.01	64.1	83	1.86	172.5	138	3.39	366.9	
29	1.02	65.5	84	1.88	175.1	139	3.43	371.4	
30	1.03	66.9	85	1.9	177.8	140	3.46	376.0	
31	1.04	68.4	86	1.92	180.5	141	3.5	380.7	
32	1.05	69.8	87	1.94	183.3	142	3.54	385.4	
33	1.06	71.3	88	1.97	186.1	143	3.57	390.1	
34	1.07	72.7	89	1.99	188.9	144	3.61	394.9	
35	1.09	74.3	90	2.01	191.7	145	3.65	399.7	
36	1.1	75.8	91	2.03	194.6	146	3.69	404.5	
37	1.11	77.3	92	2.06	197.5	147	3.73	409.5	
38	1.12	78.9	93	2.08	200.4	148	3.77	414.4	
39	1.13	80.5	94	2.1	203.4	149	3.8	419.4	
40	1.15	82.1	95	2.13	206.4	150	3.84	424.4	
41	1.16	83.7	96	2.15	209.4	151	3.88	429.5	
42	1.17	85.3	97	2.17	212.4	152	3.93	434.6	
43	1.19	87.0	98	2.2	215.5	153	3.97	439.8	
44	1.2	88.7	99	2.22	218.6	154	4.01	445.0	
45	1.21	90.4	100	2.25	221.8	155	4.05	450.3	
46	1.23	92.1	101	2.27	224.9	156	4.09	455.6	
47	1.24	93.8	102	2.3	228.1	157	4.13	461.0	
48	1.25	95.6	103	2.32	231.4	158	4.18	466.4	
49	1.27	97.4	104	2.35	234.6	159	4.22	471.9	
50	1.28	99.2	105	2.38	238.0	160	4.26	477.4	
51	1.3	101.0	106	2.4	241.3	161	4.31	482.9	
52	1.31	102.9	107	2.43	244.7	162	4.35	488.6	
53	1.33	104.8	108	2.45	248.1	163	4.39	494.2	
54	1.34	106.7	109	2.48	251.5	164	4.44	499.9	
55	1.36	108.6	110	2.51	255.0	165	4.48	505.7	

33	